Čes. stomatol. Prakt. zub. lék. (Czech Dental Journal) 2021; 121(4): 108-115 | DOI: 10.51479/cspzl.2021.012

APPLICATION OF TRIBOLOGICAL METHODS FOR PREDICTION OF WEAR OF DENTAL FILLING MATERIALS

Svoboda P.1, 2, Šikula P.1, Vrbka M.3, Nečas D.3, Roubalíková L.1
1 Stomatologická klinika Lékařské fakulty Masarykovy univerzity a Fakultní nemocnice u sv. Anny, Brno
2 Medisyn, s. r. o., Brno
3 Odbor tribologie, Ústav konstruování FSI VUT, Brno

Introduction and aim: Tribological methods are widely used not only in the field of technical sciences, but increasingly also in the field of human and veterinary medicine. Monitoring the wear of biological and prosthetic materials is now a common part of test protocols for joint replacements. From this point of view, the use of tribology in dentistry is a logical step in the development and stress monitoring of a number of materials used in restorative and prosthetic dentistry, but also in the field of dental hygiene in cleaning, including depuration techniques.

Results: The creation of appropriate conditions for the simulation of contact in an environment that is as close as possible to the real conditions in the oral cavity seems to be crucial. In addition to stress-stain optimization, a subsequent evaluation by a suitable defectoscopic method is desirable to complement the issue of tribology.

Conclusion: This comprehensive approach makes it possible to obtain valuable information on the properties of the new material through its development and, if necessary, to modify it.

Keywords: permanent filling material, physical and mechanical properties, tribology, wear, friction, topography of rubbing surfaces

Accepted: November 11, 2021; Published: December 13, 2021  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Svoboda P, Šikula P, Vrbka M, Nečas D, Roubalíková L. APPLICATION OF TRIBOLOGICAL METHODS FOR PREDICTION OF WEAR OF DENTAL FILLING MATERIALS. Čes. stomatol. Prakt. zub. lék. 2021;121(4):108-115. doi: 10.51479/cspzl.2021.012.
Download citation

References

  1. Goetz K, Campbell MD, Broge B, Brodowski M, Wensing M, Szecsenyi J. Effectiveness of a quality management program in dental care practices. BMC Oral Health. 2014; 41(14). [cit. 22. 12. 2020]. Dostupné z: https://doi.org/10.1186/1472-6831-14-41 Go to original source... Go to PubMed...
  2. ISO - International Organization for Standardization. ISO/TC 106, Technical Commities - Dentistry. Ženeva: International Organization for Standardization; 1962. [cit. 22. 12. 2020]. Dostupné z https://www.iso.org/committee/51218.html
  3. Jones DW. International dental standards. Brit Dental J. 2007; 203(6): 361-369. [cit. 22. 12. 2020]. Dostupné z: https://doi.org/10.1038/bdj.2007.837 Go to original source... Go to PubMed...
  4. Wojda S, Szoka B, Sajewicz E. Tribological charakteristics of enamel-dental material contacts investigated in vitro. Acta Bioeng Biomech. 2015; 17(1): 21-29. [cit. 23. 12. 2020]. Dostupné z: http://www.actabio.pwr.wroc.pl/Vol17No1/3.pdf
  5. Azevedo AM, Miranda A, Panzeri H, do Prado CJ, De-Mello JDB, Soares CJ, et al. Assessment in vitro of brushing on dental surface roughness alteration by laser interferometry. Braz Oral Res. 2008; 22(1): 11-17. [cit. 23. 12. 2020]. Dostupné z: https://doi.org/10.1590/S1806-83242008000100003 Go to original source... Go to PubMed...
  6. ISO - International Organization for Standardization. ISO/TR 14569-1:2007, Dental materials - Guidance on testing of wear, Ženeva: International Organization for Standardization; 2007. [cit. 23. 12. 2020]. Dostupné z: https://www.iso.org/standard/45741.html
  7. Sajewicz E. A comparative study of tribological behaviour of dental composites and tooth enamel: an energy approach. J Eng Tribol. 2010; 224(6): 559-568. [cit. 23. 12. 2020]. Dostupné z: https://doi.org/10.1243/13506501JET685 Go to original source...
  8. Holík P, Morozova Y. Opotřebení tvrdých zubních tkání a metody jeho hodnocení. Čes stomatol Prakt zubní lék. 2018; 118(4): 43-49. [cit. 23. 12. 2020]. Dostupné z: https://cspzl.dent.cz/artkey/sto-201804-0006_wear-of-hard-dental-tissues-and-methods-of-its-evaluation.php Go to original source...
  9. Heintze S, Siegward D. How to qualify and validate wear simulation devices and methods. Dent Mater. 2006; 22(8): 712-734. [cit. 23. 12. 2020]. Dostupné z: https://doi.org/10.1016/j.dental.2006.02.002 Go to original source... Go to PubMed...
  10. Prestigious 2010 Zwick Science Award [online]. 2011. [cit. 2. 1. 2021]. Dostupné z: https://www.bristol.ac.uk/dental/news/2011/54.html
  11. Villat C, Ponthiaux P, Pradelle-Plasse N, Grosgogeat B, Colon P. Initial sliding wear kinetics of two types of glass ionomer cement: A tribological study. BioMed Res Inter. 2014; 2014: 790572. [cit. 5. 1. 2021]. Dostupné z: Go to original source... Go to PubMed...
  12. https://doi.org/10.1155/2014/790572 Go to original source...
  13. Ruggiero A, D'Amato R, Sbordone L, Haro FB, Lanza A. Experimental comparison on dental biotribological pairs zirconia/zirconia and zirconia/natural tooth by using a reciprocating tribometer. J Med Syst. [online]. 2019; 43(4). [cit. 6. 9. 2020]. Dostupné z: https://doi.org/10.1007/s10916-019-1230-8 Go to original source... Go to PubMed...
  14. Lauvahutanon S, Takahashi H, Oki M, Arksornnukit M, Kanehira M, Finger WJ. In vitro evaluation of the wear resistance of composite resin blocks for CAD/CAM. Dent Mater J. [online]. 2015; 34(4), 495-502. [cit. 6. 9. 2020]. Dostupné z: https://doi.org/10.4012/dmj.2014-293 Go to original source... Go to PubMed...
  15. Vale AP, Ramalho A. Study of abrasive resistance of composites for dental restoration by ball-cratering. Wear. 2003; 255(7-12): 990-998. [cit. 6. 9. 2020]. Dostupné z: https://doi.org/10.1016/S0043-1648(03)00150-9 Go to original source...
  16. Sampaio M, Buciumeanu M, Henriques B, Silvia F, Souza J, Gomes JR. Comparison between PEEK and Ti6Al4V concerning micro-scale abrasion wear on dental applications. J Mech Behav Biomed Mater. 2016; 2016(60): 212-219. [cit. 6. 9. 2020]. Dostupné z: https://dx.doi.org/10.1016/j.jmbbm.2015.12.038 Go to original source... Go to PubMed...
  17. Scherge M, Sarembe S, Klesow A, Petzold M. Dental tribology at the microscale. Wear. 2013; 297(1-2): 1040-1044.[cit. 19. 9. 2020]. Dostupné z: https://doi.org/10.3390/lubricants7060052 Go to original source...
  18. Suwannaroop PP, Chaijareenont NK, Takahashi H, Arksornnukit M. In vitro wear resistance, hardness and elastic modulus of artificial denture teeth. Dent Mater J. 2011; 30(4): 461-468. Go to original source... Go to PubMed...
  19. Sajewicz E, Kulesza Z. A new tribometer for friction and wear studies of dental materials and hard tooth tissues. Tribol Int. 2007; 40(5): 885-895. Go to original source...
  20. Amtunes P, Ramalho VA. Influence of pH values and aging time on the tribological behaviour of posterior restorative materials. Wear. 2009; 267(5-8): 718-725. [cit. 31. 12. 2020]. Dostupné z: https://doi.org/10.1016/j.wear.2008.12.054 Go to original source...
  21. Tingting WU, Gan X, Zhu Z, Yu H. Aging effect of pH on the mechanical and tribological properties of dental composite resins. Particulate Sci Technol. [online]. 2016; 36(3): 378-385. [cit. 31. 12. 2020]. Dostupné z: https://doi.org/10.1080/02726351.2016.1262484 Go to original source...
  22. Mckinney JE, Wu W. Influence of chemicals on wear of dental composites. J Dent Res. 1982; 61(10): 1180-1183. Go to original source... Go to PubMed...
  23. Sripetchdanond J, Leevailoj C. Wear of human enamel opposing monolithic zirconia, glass ceramic, and composite resin: An in vitro study. J Prosthet Dent. 2014; 112(5): 1141-1150. [cit. 31. 12. 2020]. Dostupné z: https://doi.org/10.1016/j.prosdent.2014.05.006 Go to original source... Go to PubMed...
  24. Mayworm CD, Camargo SS, Bastian FL. Influence of artificial saliva on abrasive wear and microhardness of dental composites filled with nanoparticles. J Dent. 2008; 36(9): 703-710. [cit. 1. 1. 2021]. Dostupné z: https://doi.org/10.1016/j.jdent.2008.05.001 Go to original source... Go to PubMed...
  25. Bai Y, Zhao J, Si W, Wang X. Two-body wear performance of dental colored zirconia after different surface treatments. J Prosthet Dent. 2016; 116(4): 584-590. [cit. 2. 1. 2021]. Dostupné z: https://doi.org/10.1016/j.prosdent.2016.02.006 Go to original source... Go to PubMed...
  26. Condon JR, Ferracane JL. Evaluation of composite wear with a new multi-mode oral wear simulator. Dent Mater. 1996; 12(4): 218-226. [cit. 2. 1. 2021]. Dostupné z: https://doi.org/10.1016/s0109-5641(96)80026-1 Go to original source... Go to PubMed...
  27. Yesil ZD, Alapati S, Johnston W, Seghi RR. Evaluation of the wear resistance of new nanocomposite resin restorative materials. J Prosthet Dent. 2008; 99(6): 435-443. [cit. 2. 1. 2021]. Dostupné z: https://doi.org/10.1016/S0022-3913(08)60105-5 Go to original source... Go to PubMed...
  28. Clelland N, Pagnotto M, Kerby RE, Seghi RR. Relative wear of flowable and highly filled composite. J Prosthet Dent. 2005; 93(2): 153-157. [cit. 2. 1. 2021]. Dostupné z: https://doi.org/10.1016/j.prosdent.2004.11.006 Go to original source... Go to PubMed...
  29. Lim B, Ferracane JL, Condon J, Adey JD. Effect of filler fraction and filler surface treatment on wear of microfilled composites. Dent Mater. 2002; 18(1): 1-11. [cit. 2. 1. 2021]. Dostupné z: https://doi.org/10.1016/S0109-5641(00)00103-2 Go to original source... Go to PubMed...
  30. Bizhang M, Schmidt I, Chun YP, Arnold WH, Zimmer S. Toothbrush abrasivity in a long-term simulation on human dentin depends on brushing mode and bristle arrangement. PloS one. 2017; 12(2): e0172060. [cit. 3. 1. 2021]. Dostupné z: https://doi.org/10.1371/journal.pone.0172060 Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.