Čes. stomatol. Prakt. zub. lék. (Czech Dental Journal) 2010; 110(3): 49-60

The Surface of Dental Implants and the Role in Interaction with Biological Environment

R. Vrbová1,*, M. Sochor2
1 Výzkumný ústav stomatologický 1. LF UK a VFN, Praha
2 Ústav mechaniky, biomechaniky a mechatroniky, Fakulta strojní, ČVUT, Praha

Dental implants are routinely used in modern dentistry to replace missing teeth. Commercial pure titanium or titanium alloys (e.g. Ti6Al4V) is the most frequently used material for their manufacturing. The screw type of cylindrical dental implant is the most available and the most used in dental implantology. Dental implants research is focusing on improving of tissue - implant surface contact, with a view to shorten wound healing and to ensure good quality of primary and secondary stability of dental implant. Important aspect is long-term functionality of implants without the need of reimplantations.
In this paper there is basic overview of materials for dental implants manufacturing and brief description of interaction between tissue-implant surface and biological environment. There are also summarized basic surface properties influencing this interaction and discussed various types of surface treatments, which can be seen in practice and also in applied research.

Keywords: dental implant; interactions tissue; biomaterial; surface properties; surface treatments

Published: September 1, 2010  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Vrbová R, Sochor M. The Surface of Dental Implants and the Role in Interaction with Biological Environment. Čes. stomatol. Prakt. zub. lék. 2010;110(3):49-60.
Download citation

References

  1. Abrahamsson, I., Albouy, J. P., Berglundh, T.: Healing at fluoride-modified implants placed in wide marginal defects: an experimental study in dogs. Clinical Oral Implants Research, 19, 2008, 2, s. 153-159. Go to original source... Go to PubMed...
  2. Albrektsson, T., Wennerberg, A.: The impact of oral implants - past and future, 1966-2042. J. Can. Dent. Assoc., 71, 2005, 5, s. 327.
  3. Andreiotelli, M., Wenz, H. J., Kohal, R. J.: Are ceramic implants a viable alternative to titanium implants? A systematic literature review. Clin. Oral Implants Res., 20, 2009, Suppl. 4, s. 32-47. Go to original source... Go to PubMed...
  4. Aparicio, C., Gil, F. J., Fonseca, C. et al.: Corrosion behaviour of commercially pure titanium shot blasted with different materials and sizes of shot particles for dental implant applications. Biomaterials, 24, 2003, 2, s. 263-273. Go to original source... Go to PubMed...
  5. Baker, K. C., Anderson, M. A., Oehlke, S. A. et al.: Growth, characterization and biocompatibility of bone-like calcium phosphate layers biomimetically deposited on metallic substrata. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 26, 2006, 8, s. 1351-1360. Go to original source...
  6. Berbecaru, C., Alexandru, H. V., Ianculescu, A. et al.: Bioglass thin films for biomimetic implants. Applied Surface Science, 255, 2009, 10, s. 5476-5479. Go to original source...
  7. Berglundh, T., Abrahamsson, I., Albouy, J. P. et al.: Bone healing at implants with a fluoride-modified surface: an experimental study in dogs. Clinical Oral Implants Research, 18, 2007, 2, s. 147-152. Go to original source... Go to PubMed...
  8. Brunette, D. M., Tengvall, P., Textor, M. et al.: Titanium in medicine: material science, surface science, engineering [on line]. Springer, 2001. Dostupný z WWW: <http://books.google.cz>. ISBN 3-540-66936-1.
  9. Brynda, E.: Interakce biologického prostředí s umělými povrchy. Seminář Biomateriály a jejich povrchy, 2008, Herbertov, ČR.
  10. Buser, D., Broggini, N., Wieland, M. et al.: Enhanced bone apposition to a chemically modified SLA titanium surface. J. Dent. Res., 83, 2004, 7, s. 529-533. Go to original source... Go to PubMed...
  11. Buser, D., Nydegger, T., Oxland, T. et al.: Interface shear strength of titanium implants with a sandblasted and acid-etched surface: a biomechanical study in the maxilla of miniature pigs. J. Biomed. Mater. Res., 45, 1999, 2, s. 75-83. Go to original source... Go to PubMed...
  12. Citeau, A., Guicheux, J., Vinatier, C. et al.: In vitro biological effects of titanium rough surface obtained by calcium phosphate grid blasting. Biomaterials, 26, 2005, 2, s. 157-165. Go to original source... Go to PubMed...
  13. Clemens, J. A., Klein, C. P., Sakkers, R. J., et al.: Healing of gaps around calcium phosphate-coated implants in trabecular bone of the goat. J. Biomed. Mater. Res., 36, 1997, 1, s. 55-64. Go to original source... Go to PubMed...
  14. Cooper, L. F., Zhou, Y. S., Takebe, J. et al.: Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit-blasted c.p. titanium endosseous implants. Biomaterials, 27, 2006, 6, s. 926-936. Go to original source... Go to PubMed...
  15. Cotell, C. M.: Pulsed-laser deposition and processing of biocompatible hydroxylapatite thin-films. Applied Surface Science, 69, 1993, 1-4, s. 140-148. Go to original source...
  16. Davies, J. E.: Mechanisms of endosseous integration. Int. J. Prosthodont, 11, 1998, 5, s. 391-401. Go to original source...
  17. Debruijn, J. D., Bovell, Y. P., Vanblitterswijk, C. A.: Structural arrangements at the interface between Plasma-Sprayed Calcium Phosphates and Bone. Biomaterials, 15, 1994, 7, s. 543-550. Go to original source... Go to PubMed...
  18. Dee, K. C. P., Bizios, R.: An introduction to tissue - biomaterial interactions. 1. vyd. New Jersey, John Wiley & Sons, Inc., 2002. 228 s. ISBN 978-0-471-25394-5. Go to original source...
  19. Dinda, G. P., Shin, J., Mazumder, J.: Pulsed laser deposition of hydroxyapatite thin films on Ti-6Al-4V: Effect of heat treatment on structure and properties. Acta Biomaterialia, 5, 2009, 5, s. 1821-1830. Go to original source... Go to PubMed...
  20. Diniz, M. G., Pinheiro, M. A. S., Andrade Jun. A. C. C. et al.: Characterization of titanium surfaces for dental implants with inorganic contaminant. Brazilian Oral Research, 19, 2005, s. 106-111. Go to original source... Go to PubMed...
  21. Fathi, M. H., Doostmohammadi, A.: Bioactive glass nanopowder and bioglass coating for biocompatibility improvement of metallic implant. Journal of Materials Processing Technology, 209, 2009, 3, s. 1385-1391. Go to original source...
  22. Franchi, M., Bacchelli, B., Martini, D. et al.: Early detachment of titanium particles from various different surfaces of endosseous dental implants. Biomaterials, 25, 2004, 12, s. 2239-2246. Go to original source... Go to PubMed...
  23. Franchi, M., Orsini, E., Martini, D. et al.: Destination of titanium particles detached from titanium plasma sprayed implants. Micron, 38, 2007, 6, s. 618-625. Go to original source... Go to PubMed...
  24. Frei, R., Biosca, F. E., Handl, M. et al.: The role of growth factors in the human organism and their use in medicine, especially in orthopedics and traumatology. Acta Chirurgiae Orthopaedicae et Traumatologiae Cechoslovaca, 75, 2008, 4, s. 247-252. Go to PubMed...
  25. Geetha, M., Singh, A. K., Asokamani, R. et al.: Ti based biomaterials, the ultimate choice for orthopaedic implants - A review. Progress in Materials Science, 54, 2009, 3, s. 397-425. Go to original source...
  26. Gomez-Vega, J. M., Saiz, E., Tomsia, A. P.: Glass-based coatings for titanium implant alloys. Journal of Biomedical Materials Research, 46, 1999, 4, s. 549-559. Go to original source... Go to PubMed...
  27. Gomez-Vega, J. M., Saiz, E., Tomsia, A. P. et al.: Bioactive glass coatings with hydroxyapatite and Bioglass® particles on Ti-based implants. 1. Processing. Biomaterials, 21, 2000, 2, s. 105-111. Go to original source... Go to PubMed...
  28. Gotfredsen, K., Berglundh, T., Lindhe, J.: Anchorage of titanium implants with different surface characteristics: an experimental study in rabbits. Clin. Implant. Dent. Relat. Res., 2, 2000, 3, s. 120-128. Go to original source... Go to PubMed...
  29. Himmlová, L.: Titanový implantát s vrstvou biokeramiky - studie in vitro, in vivo. Kandidátská dizertační práce, 1999.
  30. Hollander, D. A., von Walter, M., Wirtz, T. et al.: Structural, mechanical and in vitro characterization of individually structured Ti-6Al-4V produced by direct laser forming. Biomaterials, 27, 2006, 7, s. 955-963. Go to original source... Go to PubMed...
  31. Hora, T.: Korozní odolnost titanu ve stomatologických aplikacích. Česká stomatologie, 2005, 1, s. 20-25.
  32. Huang, Y., Qu, Y., Yang, B. et al.: In vivo biological responses of plasma sprayed hydroxyapatite coatings with an electric polarized treatment in alkaline solution. Materials Science and Engineering: C, 29, 2009, 8, s. 2411-2416. Go to original source...
  33. Chevalier, J.: What future for zirconia as a biomaterial? Biomaterials, 27, 2006, 4, s. 535-543. Go to original source... Go to PubMed...
  34. Cho, S. A., Park, K. T.: The removal torque of titanium screw inserted in rabbit tibia treated by dual acid etching. Biomaterials, 24, 2003, 20, s. 3611-3617. Go to original source... Go to PubMed...
  35. Institut Straumann AG: Innovation SLActive surface - latest scientific studies. Firemní katalog [on line]. 2006. Dostupný z WWW: <http://www.straumann.ch>.
  36. Jacobs, J. J., Skipor, A. K., Patterson, L. M. et al.: Metal release in patients who have had a primary total hip arthroplasty. A prospective, controlled, longitudinal study. J. Bone Joint Surg. Am., 80, 1998, 10, s. 1447-1458. Go to original source... Go to PubMed...
  37. Kim, D. J., Lee, M. H., Lee, D. Y. et al.: Mechanical properties, phase stability, and biocompatibility of (Y, Nb)-TZP/Al2O3 composite abutments for dental implant. J. Biomed. Mater. Res., 53, 2000, 4, s. 438-443. Go to original source... Go to PubMed...
  38. Klokkevold, P. R., Nishimura, R. D., Adachi, M. et al.: Osseointegration enhanced by chemical etching of the titanium surface. A torque removal study in the rabbit. Clin. Oral Implants Res., 8, 1997, 6, s. 442-447. Go to original source... Go to PubMed...
  39. Kokubo, T., Miyaji, F., Kim, H. M. et al.: Spontaneous formation of bonelike apatite layer on chemically treated titanium metals. Journal of the American Ceramic Society, 79, 1996, 4, s. 1127-1129. Go to original source...
  40. Kold, S., Rahbek, O., Zippor, B. et al.: Bone compaction enhances fixation of hydroxyapatite-coated implants in a canine gap model. J. Biomed Mater. Res. B Appl. Biomater., 75, 2005, 1, s. 49-55. Go to original source... Go to PubMed...
  41. Lalor, P. A., Revell, P. A., Gray, A. B. et al.: Sensitivity to titanium. A cause of implant failure? J. Bone Joint Surg. Br., 73, 1991, 1, s. 25-28. Go to original source... Go to PubMed...
  42. Lasak: Impladent STI-Bio-C. Firemní katalog [on line]. Dostupný z WWW: <http://www.lasak.cz>.
  43. Le Guehennec, L., Soueidan, A., Layrolle, P. et al.: Surface treatments of titanium dental implants for rapid osseointegration. Dent. Mater., 23, 2007, 7, s. 844-854. Go to original source... Go to PubMed...
  44. Lee, I. S., Zhao, B., Lee, G. H. et al.: Industrial application of ion beam assisted deposition on medical implants. Surface & Coatings Technology, 201, 2007, 9-11, s. 5132-5137. Go to original source...
  45. Liste, S., Serra, J., Gonzalez, P. et al.: The role of the reactive atmosphere in pulsed laser deposition of bioactive glass films. Thin Solid Films, 453-454, 2004, s. 224-228. Go to original source...
  46. Liu, Y., Li, J. P., Hunziker, E. B. et al.: Incorporation of growth factors into medical devices via biomimetic coatings. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 364, 2006, 1838, s. 233-248. Go to original source... Go to PubMed...
  47. Lobato, J. V., Hussain, N. S., Botelho, C. M. et al.: Titanium dental implants coated with Bonelike(R): Clinical case report. Thin Solid Films, 515, 2006, 1, s. 279-284. Go to original source...
  48. Lombardi, A. V., Jr., Mallory, T. H., Vaughn, B. K. et al.: Aseptic loosening in total hip arthroplasty secondary to osteolysis induced by wear debris from titanium-alloy modular femoral heads. J. Bone Joint Surg. Am., 71, 1989, 9, s. 1337-1342. Go to original source... Go to PubMed...
  49. Marro, F. G.: Improvement of 3Y-TZP hydrothermal degradation resistance by surface modification with ceria without impairing mechanical properties. Materials Science and Engineering: A, 2009, 5, s. 1-8. Go to original source...
  50. Muller, K., Valentine-Thon, E.: Hypersensitivity to titanium: clinical and laboratory evidence. Neuro Endocrinol Lett., 27, 2006, Suppl. 1, s. 31-35.
  51. Mustafa, K., Wennerberg, A., Wroblewski, J. et al.: Determining optimal surface roughness of TiO2 blasted titanium implant material for attachment, proliferation and differentiation of cells derived from human mandibular alveolar bone. Clinical Oral Implants Research, 12, 2001, 5, s. 515-525. Go to original source... Go to PubMed...
  52. Nguyen, H. Q., Deporter, D. A., Pilliar, R. M. et al.: The effect of sol-gel-formed calcium phosphate coatings on bone ingrowth and osteoconductivity of porous-surfaced Ti alloy implants. Biomaterials, 25, 2004, 5, s. 865-876. Go to original source... Go to PubMed...
  53. Okazaki, Y., Gotoh, E.: Comparison of metal release from various metallic biomaterials in vitro. Biomaterials, 26, 2005, 1, s. 11-21. Go to original source... Go to PubMed...
  54. Overgaard, S., Bromose, U., Lind, M. et al.: The influence of crystallinity of the hydroxyapatite coating on the fixation of implants - Mechanical and histomorphometric results. Journal of Bone and Joint Surgery-British Volume, 81B, 1999, 4, s. 725-731. Go to original source...
  55. Petruželka, J., Dluhoš, L., Hrušák, D. et al.: Nanostrukturní titan - nový materiál pro dentální implantáty. Česká stomatologie, 106, 2006, 3, s. 72-77.
  56. Piattelli, A., Degidi, M., Paolantonio, M. et al.: Residual aluminum oxide on the surface of titanium implants has no effect on osseointegration. Biomaterials, 24, 2003, 22, s. 4081-4089. Go to original source... Go to PubMed...
  57. Rawlings, R. D.: Bioactive glasses and glass-ceramics. Clin. Mater., 14, 1993, 2, s. 155-179. Go to original source... Go to PubMed...
  58. Ronold, H. J., Ellingsen, J. E.: Effect of micro-roughness produced by TiO2 blasting - tensile testing of bone attachment by using coin-shaped implants. Biomaterials, 23, 2002, 21, s. 4211-4219. Go to original source... Go to PubMed...
  59. Ronold, H. J., Lyngstadaas, S. P., Ellingsen, J. E.: Analysing the optimal value for titanium implant roughness in bone attachment using a tensile test. Biomaterials, 24, 2003, 25, s. 4559-4564. Go to original source... Go to PubMed...
  60. Rupp, F., Scheideler, L., Olshanska, N. et al.: Enhancing surface free energy and hydrophilicity through chemical modification of microstructured titanium implant surfaces. Journal of Biomedical Materials Research Part A, 76A, 2006, 2, s. 323-334. Go to original source... Go to PubMed...
  61. Serro, A. P., Saramago, B.: Influence of sterilization on the mineralization of titanium implants induced by incubation in various biological model fluids. Biomaterials, 24, 2003, 26, s. 4749-4760. Go to original source... Go to PubMed...
  62. Schroeder, A., Sutter, F., Krekeler, G. et al.: Oral implantology. Basics - ITI hollow cylinder. Stuttgart, Georg Thieme Verlag, 1991, 374 s., ISBN 3-13-744301-6.
  63. Schrooten, J., Van Oosterwyck, H., Vander Sloten, J. et al.: Adhesion of new bioactive glass coating. Journal of Biomedical Materials Research, 44, 1999, 3, s. 243-252. Go to original source... Go to PubMed...
  64. Schupbach, P., Glauser, R., Rocci, A. et al.: The human bone-oxidized titanium implant interface: A light microscopic, scanning electron microscopic, back-scatter scanning electron microscopic, and energy-dispersive x-ray study of clinically retrieved dental implants. Clin. Implant. Dent. Relat. Res., 2005, 7, Suppl. 1, s. S36-S43. Go to original source... Go to PubMed...
  65. Schwarz, F., Herten, M., Sager, M. et al.: Bone regeneration in dehiscence-type defects at chemically modified (SLActive) and conventional SLA titanium implants: a pilot study in dogs. Journal of Clinical Periodontology, 34, 2007, 1, s. 78-86. Go to original source... Go to PubMed...
  66. Schwarz, F., Wieland, M., Schwartz, Z. et al.: Potential of chemically modified hydrophilic surface characteristics to support tissue integration of titanium dental implants. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 88B, 2009, 2, s. 544-557. Go to original source... Go to PubMed...
  67. Soballe, K., Overgaard, S.: The current status of hydroxyapatite coating of prostheses. J. Bone Joint Surg. Br., 78, 1996, 5, s. 689-691. Go to original source... Go to PubMed...
  68. Song, Y., Xu, D. S., Yang, R. et al.: Theoretical study of the effects of alloying elements on the strength and modulus of [beta]-type bio-titanium alloys. Materials Science and Engineering A, 260, 1999, 1-2, s. 269-274. Go to original source...
  69. Sul, Y. T., Johansson, C. B., Petronis, S. et al.: Characteristics of the surface oxides on turned and electrochemically oxidized pure titanium implants up to dielectric breakdown: the oxide thickness, micropore configurations, surface roughness, crystal structure and chemical composition. Biomaterials, 23, 2002, 2, s. 491-501. Go to original source... Go to PubMed...
  70. Sul, Y. T., Johansson, C. B., Roser, K. et al.: Qualitative and quantitative observations of bone tissue reactions to anodised implants. Biomaterials, 23, 2002, 8, s. 1809-1817. Go to original source... Go to PubMed...
  71. Sumner, D. R., Turner, T. M., Igloria, R. et al.: Functional adaptation and ingrowth of bone vary as a function of hip implant stiffness. Journal of Biomechanics, 31, 1998, 10, s. 909-917. Go to original source... Go to PubMed...
  72. Sun, L. M., Berndt, C. C., Gross, K. A. et al.: Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: A review. Journal of Biomedical Materials Research, 58, 2001, 5, s. 570-592. Go to original source... Go to PubMed...
  73. Sun, L. M., Berndt, C. C., Khor, K. A. et al.: Surface characteristics and dissolution behavior of plasma-sprayed hydroxyapatite coating. Journal of Biomedical Materials Research, 62, 2002, 2, s. 228-236. Go to original source... Go to PubMed...
  74. Szmukler-Moncler, S., Perrin, D., Ahossi, V. et al.: Biological properties of acid etched titanium implants: Effect of sandblasting on bone anchorage. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 68B, 2004, 2, s. 149-159. Go to original source... Go to PubMed...
  75. Szmukler-Moncler, S., Testori, T., Bernard, J. P.: Etched implants: A comparative surface analysis of four implant systems. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 69B, 2004, 1, s. 46-57. Go to original source... Go to PubMed...
  76. Šimůnek, A.: Dentální implantologie. Hradec Králové: NUCLEUS HK, 2001. ISBN 80-86225-15-1, 2001.
  77. Traini, T., Mangano, C., Sammons, R. L. et al.: Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dental Materials, 24, 2008, 11, s. 1525-1533. Go to original source... Go to PubMed...
  78. Vercaigne, S., Wolke, J. G. C., Naert, I. et al.: A mechanical evaluation of TiO2-gritblasted and Ca-P magnetron sputter coated implants placed into the trabecular bone of the goat: part 1. Clinical Oral Implants Research, 11, 2000, 4, s. 305-313. Go to original source... Go to PubMed...
  79. VŠCHT: Technologie keramiky - Oxidová keramika [on line]. Dostupný z WWW: <http://www.vscht.cz/sil/keramika/index.html>.
  80. Wataha, J. C.: Biocompatibility of dental casting alloys: a review. J. Prosthet. Dent., 83, 2000, 2, s. 223-234. Go to original source... Go to PubMed...
  81. Wennerberg, A., Albrektsson, T., Johansson, C. et al.: Experimental study of turned and grit-blasted screw-shaped implants with special emphasis on effects of blasting material and surface topography. Biomaterials, 17, 1996, 1, s. 15-22. Go to original source... Go to PubMed...
  82. Witt, J. D., Swann, M.: Metal wear and tissue response in failed titanium alloy total hip replacements. J. Bone Joint Surg. Br., 73, 1991, 4, s. 559-563. Go to original source... Go to PubMed...
  83. Xiropaidis, A. V., Qahash, M., Lim, W. H. et al.: Bone-implant contact at calcium phosphate-coated and porous titanium oxide (TiUnite (TM))-modified oral implants. Clinical Oral Implants Research, 16, 2005, 5, s. 532-539. Go to original source... Go to PubMed...
  84. Yang, C. W., Lui, T. S.: Microstructural self-healing effect of hydrothermal crystallization on bonding strength and failure mechanism of hydroxyapatite coatings. Journal of the European Ceramic Society, 28, 2008, 11, s. 2151-2159. Go to original source...
  85. Yang, C. Y., Lee, T. M., Yang, C. W. et al.: In vitro and in vivo biological responses of plasma-sprayed hydroxyapatite coatings with posthydrothermal treatment. Journal of Biomedical Materials Research Part A, 83A, 2007, 2, s. 263-271. Go to original source... Go to PubMed...
  86. Yang, C. Y., Wang, B. C., Lee, T. M. et al.: Intramedullary implant of plasma-sprayed hydroxyapatite coating: An interface study. Journal of Biomedical Materials Research, 36, 1997, 1, s. 39-48. Go to original source... Go to PubMed...
  87. Zhang, L., Webster, T. J.: Nanotechnology and nanomaterials: Promises for improved tissue regeneration. Nano Today,4, 2009, 1, s. 66-80. Go to original source...
  88. Zhao, G., Schwartz, Z., Wieland, M. et al.: High surface energy enhances cell response to titanium substrate microstructure. Journal of Biomedical Materials Research Part A, 74A, 2005, 1, s. 49-58. Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.