Čes. stomatol. Prakt. zub. lék. (Czech Dental Journal) 2024; 124(3): 69-74 | DOI: 10.51479/cspzl.2024.002
ELECTROPHILICITY IN THE CONTEXT OF ORAL HOMEOSTASIS AND THE THEORY OF HORMESIS: BIOCHEMICAL VIEW
- 1 Ústav lékařské chemie a biochemie, Lékařská fakulta Univerzity Palackého v Olomouci
- 2 Klinika zubního lékařství, Lékařská fakulta Univerzity Palackého v Olomouci
- 3 Klinika zubního lékařství, Fakultní nemocnice Olomouc
Introduction: The oral cavity is a complex system in which mutual chemical communication occurs between tissues, microbiota, and components of saliva and food. This paper focuses on hormetic effects and electrophilic compounds, which can play a role in defense mechanisms against oxidative stress and inflammatory processes. Hormetic effects, induced by sublethal or subtoxic stressors, can activate repair mechanisms and enhance tissue resistance to damage.
Methods: The analysis was conducted through searches in three electronic databases: Web of Science, PubMed, and Scopus. Our research focused on studies published between 2000 and 2023 that dealt with redox processes, inflammatory conditions, and activation of the Nrf2 pathway in the oral cavity. Studies focused on cancerous diseases were excluded.
Conclusion: Electrophilic compounds act as one of the agents that interfere with the homeostasis of the oral cavity, and can thus find therapeutic potential in dentistry, specifically in periodontology. However, findings based on in vitro and preclinical studies require further verification under clinical conditions, and also considering interactions with oral microbiota.
Keywords: hormesis, Nrf2 pathway, nitro-fatty acids, oral cavity homeostasis
Received: May 17, 2024; Revised: August 14, 2024; Accepted: August 20, 2024; Prepublished online: September 17, 2024; Published: September 30, 2024 Show citation
ACS | AIP | APA | ASA | Harvard | Chicago | Chicago Notes | IEEE | ISO690 | MLA | NLM | Turabian | Vancouver |
References
- Davies KJ. Adaptive homeostasis. Mol Aspects Med. 2016;49:1-7. https://doi.org/10.1016/j.mam.2016.04.007
Go to original source...
Go to PubMed...
- Buzalaf MA, Hannas AR, Kato MT. Saliva and dental erosion. J Appl Oral Sci. 2012;20(5):493-502. https://doi.org/10.1590/s1678-77572012000500001
Go to original source...
Go to PubMed...
- Fukuto JM, Carrington SJ, Tantillo DJ, Harrison JG, Ignarro LJ, Freeman BA, et al. Small molecule signaling agents: the integrated chemistry and biochemistry of nitrogen oxides, oxides of carbon, dioxygen, hydrogen sulfide, and their derived species. Chem Res Toxicol. 2012;25(4):769-93. https://doi.org/10.1021/tx2005234
Go to original source...
Go to PubMed...
- Bernard C. An Introduction to the Study of Experimental Medicine 1865 originally published in 1865; first English translation by Henry Copley Greene, published by Macmillan & Co, Ltd 1927; Dover edition. 1957.
- Cannon WB. The Wisdom of the Body New York: W W Norton & Company; pp 177-201 1932.
- Selye H. The Stress of Life New York: McGraw-Hill Book Company. 1956.
- Southam CM, Ehrlich J. Effects of Extract of western red-cedar heartwood on certain wood-decaying fungi in culture. Phytopathology. 1943;33:517-24.
- Calabrese EJ. Hormesis: a revolution in toxicology, risk assessment and medicine. EMBO Rep. 2004;5 Spec No(Suppl 1):S37-40. https://doi.org/10.1038/sj.embor.7400222
Go to original source...
Go to PubMed...
- Calabrese EJ, Baldwin LA. Toxicology rethinks its central belief. Nature. 2003;421(6924):691-2. https://doi.org/10.1038/421691a
Go to original source...
Go to PubMed...
- Vacek J, Zatloukalova M, Kabelac M. Redox biology and electrochemistry. Towards evaluation of bioactive electron donors and acceptors. Curr Opin Electrochem. 2022;36:101142. https://doi.org/10.1016/j.coelec.2022.101142
Go to original source...
- Kosmachevskaya OV, Topunov AF. Nonenzymatic Reactions in Metabolism: Their Role in Evolution and Adaptation. Appl Biochem Microbiol. 2021;57(5):543-55. https://doi.org/10.1134/S0003683821050100
Go to original source...
- Sies H, Belousov VV, Chandel NS, Davies MJ, Jones DP, Mann GE, et al. Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat Rev Mol Cell Biol. 2022;23(7):499-515. https://doi.org/10.1038/s41580-022-00456-z
Go to original source...
Go to PubMed...
- Hayyan M, Hashim MA, Alnashef IM. Superoxide Ion: Generation and Chemical Implications. Chem Rev. 2016;116(5):3029-85. https://doi.org/10.1021/acs.chemrev.5b00407
Go to original source...
Go to PubMed...
- Hayes JD, Dinkova-Kostova AT. The Nrf2 regulatory network provides an interface between redox and intermediary metabolism. Trends Biochem Sci. 2014;39(4):199-218. https://doi.org/10.1016/j.tibs.2014.02.002
Go to original source...
Go to PubMed...
- Calabrese EJ, Kozumbo WJ. The hormetic dose-response mechanism: Nrf2 activation. Pharmacol Res. 2021;167:105526. https://doi.org/10.1016/j.phrs.2021.105526
Go to original source...
Go to PubMed...
- Schopfer FJ, Khoo NKH. Nitro-Fatty Acid Logistics: Formation, Biodistribution, Signaling, and Pharmacology. Trends Endocrinol Metab. 2019;30(8):505-19. https://doi.org/10.1016/j.tem.2019.04.009
Go to original source...
Go to PubMed...
- Choi EY, Lee JE, Lee AR, Choi IS, Kim SJ. Nitrooleic acid inhibits macrophage activation induced by lipopolysaccharide from Prevotella intermedia. Nut Res. 2022;106:35-46. https://doi.org/10.1016/j.nutres.2022.07.009
Go to original source...
Go to PubMed...
- Lee JE, Lee AR, Choi EY, Choi IS, Kim SJ. Effect of nitro-conjugated linoleic acid on the inflammatory response of murine macrophages activated with lipopolysaccharide derived from Prevotella intermedia. Inflammopharmacology. 2024;32(1):561-73. https://doi.org/10.1007/s10787-023-01340-8
Go to original source...
Go to PubMed...
- Mangla B, Javed S, Sultan MH, Kumar P, Kohli K, Najmi A, et al. Sulforaphane: A review of its therapeutic potentials, advances in its nanodelivery, recent patents, and clinical trials. Phytother Res. 2021;35(10):5440-58. https://doi.org/10.1002/ptr.7176
Go to original source...
Go to PubMed...
- Dias IH, Chapple IL, Milward M, Grant MM, Hill E, Brown J, et al. Sulforaphane restores cellular glutathione levels and reduces chronic periodontitis neutrophil hyperactivity in vitro. PLoS One. 2013;8(6):e66407. https://doi.org/10.1371/journal.pone.0066407
Go to original source...
Go to PubMed...
- Kim KN, Kim JY, Cha JY, Choi SH, Kim J, Cho SW, et al. Antifibrotic effects of sulforaphane treatment on gingival elasticity reduces orthodontic relapse after rotational tooth movement in beagle dogs. Korean J Orthod. 2020;50(6):391-400. https://doi.org/10.4041/kjod.2020.50.6.391
Go to original source...
Go to PubMed...
- Chin YT, Tu HP, Lin CY, Kuo PJ, Chiu HC, Liu SH, et al. Antioxidants protect against gingival overgrowth induced by cyclosporine A. J Periodontal Res. 2021;56(2):397-407. https://doi.org/10.1111/jre.12832
Go to original source...
Go to PubMed...
- Saidu NEB, Kavian N, Leroy K, Jacob C, Nicco C, Batteux F, et al. Dimethyl fumarate, a two-edged drug: Current status and future directions. Med Res Rev. 2019;39(5):1923-52. https://doi.org/10.1002/med.21567
Go to original source...
Go to PubMed...
- Yamaguchi Y, Kanzaki H, Katsumata Y, Itohiya K, Fukaya S, Miyamoto Y, et al. Dimethyl fumarate inhibits osteoclasts via attenuation of reactive oxygen species signalling by augmented antioxidation. J Cell Mol Med. 2018;22(2):1138-47. https://doi.org/10.1111/jcmm.13367
Go to original source...
Go to PubMed...
- Gu F, Wu H, Huang Z, Wang F, Yang R, Bian Z, et al. The effects of dimethyl fumarate on cytoplasmic LPS-induced noncanonical pyroptosis in periodontal ligament fibroblasts and dental pulp cells. Int Endod J. 2023;56(7):869-80. https://doi.org/10.1111/iej.13926
Go to original source...
Go to PubMed...
- Guenova E, Hoetzenecker W. Treatment of recurrent aphthous stomatitis with fumaric acid esters. Arch Dermatol. 2011;147(3):282-4. https://doi.org/10.1001/archdermatol.2011.27
Go to original source...
Go to PubMed...
- Piesche M, Roos J, Kühn B, Fettel J, Hellmuth N, Brat C, et al. The Emerging Therapeutic Potential of Nitro Fatty Acids and Other Michael Acceptor-Containing Drugs for the Treatment of Inflammation and Cancer. Front Pharmacol. 2020;11:1297. https://doi.org/10.3389/fphar.2020.01297
Go to original source...
Go to PubMed...
- Calabrese EJ. Human periodontal ligament stem cells and hormesis: Enhancing cell renewal and cell differentiation. Pharmacol Res. 2021;173:105914. https://doi.org/10.1016/j.phrs.2021.105914
Go to original source...
Go to PubMed...
- Carreno M, Pires MF, Woodcock SR, Brzoska T, Ghosh S, Salvatore SR, et al. Immunomodulatory actions of a kynurenine-derived endogenous electrophile. Science Adv. 2022;8(26). https://doi.org/10.1126/sciadv.abm9138
Go to original source...
Go to PubMed...
This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.