Čes. stomatol. Prakt. zub. lék. (Czech Dental Journal) 2025; 125(1): 5-11 | DOI: 10.51479/cspzl.2025.001

ENDOGENOUSLY PRODUCED CHEMILUMINESCENCE OF INNER AND OUTER TOOTH STRUCTURES: A PILOT STUDY

Beneš P.1, 2, Poplová M.3, Jirásek P1, 2, Havelka D.3, Cifra M.3, Vacek J.4
1 Klinika zubního lékařství, Lékařská fakulta Univerzity Palackého v Olomouci
2 Klinika zubního lékařství, Fakultní nemocnice Olomouc
3 Výzkumný tým Bioelektrodynamika, Ústav fotoniky a elektroniky, Akademie věd ČR, v. v. i., Praha
4 Ústav lékařské chemie a biochemie, Lékařská fakulta Univerzity Palackého v Olomouci

Introduction: As a result of metabolic processes, the endogenous production of chemiluminescence occurs in living biological structures, which we also refer to as biological autochemiluminescence (BAL). The generation of BAL is closely connected with oxidation processes, the formation of free radicals, and in general the redox homeostasis of the investigated biological material. BAL has previously been studied in mammalian cells and tissues. So far, however, this phenomenon has not been described in dental tissue structures. In addition to endogenously generated BAL, BAL can be exogenously induced by physical (UV radiation, mechanical damage, heat), chemical (oxidizing agents, e.g. H2O2) or biotic (pathogens) factors.

Methods: Endogenously and exogenously induced BAL were investigated on the surface and internal structures of semi-impacted and impacted third molars, which were indicated for extraction by a dentist due to their inappropriate placement in the jaw in two patients (a 21-year-old woman and a 22-year-old man). BAL detection was performed with samples after dental plaque was mechanically removed with a rotating brush. Using a piezosurgery unit with a saw headpiece, longitudinal sections were made to reveal all internal parts of the tooth. The samples prepared in this way – the entire internal section and the external part of the entire tooth – were subjected to BAL detection in a dark chamber using H7360-01 PMT photomultiplier. Subsequently, the samples were treated with a solution of the oxidizing agent 3% H2O2 or the reducing agent 10 mM TCEP (tris(carboxyethyl)phosphine).

Results: Both tooth samples were shown to produce BAL. Endogenous chemiluminescence production was observed in the internal structures of the tooth (18,600 counts/600 s), which was 2.7-fold higher than the BAL detected on the tooth outer surfaces (6,900 counts/600 s). After H2O2 treatment, there was a significant (up to 14-fold) increase in BAL for internal tooth structures compared to the basal intensity of endogenously produced BAL. The application of TCEP (negative control) resulted in a residual suppression of BAL production.

Conclusion: The results of this pilot study show that BAL can be produced not only by soft tissues but also by hard dental tissue. The obtained results could be used for further research of the metabolic activity and reactivity of the inner and outer parts of the tooth, especially in the context of redox biology research. BAL detection could also be applied in the development of new imaging techniques.

Keywords: biological autochemiluminescence, tooth structures, oxidative stress

Received: October 24, 2024; Revised: January 6, 2025; Accepted: January 9, 2025; Prepublished online: February 27, 2025; Published: March 10, 2025  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
Beneš P, Poplová M, Jirásek P, Havelka D, Cifra M, Vacek J. ENDOGENOUSLY PRODUCED CHEMILUMINESCENCE OF INNER AND OUTER TOOTH STRUCTURES: A PILOT STUDY. Čes. stomatol. Prakt. zub. lék. 2025;125(1):5-11. doi: 10.51479/cspzl.2025.001.
Download citation

References

  1. Vahalová P, Cifra M. Biological autoluminescence as a perturbance-free method for monitoring oxidation in biosystems. Prog Biophys Mol Biol. 2023; 177: 80-108. Dostupné z: https://doi.org/10.1016/j.pbiomolbio.2022.10.009 Go to original source... Go to PubMed...
  2. Cifra M, Pospíšil P. Ultra-weak photon emission from biological samples: Definition, mechanisms, properties, detection and applications. J Photochem Photobiol B. 2014; 139: 2-10. Dostupné z: https://doi.org/10.1016/j.jphotobiol.2014.02.009 Go to original source... Go to PubMed...
  3. Pospíšil P, Prasad A, Rác M. Mechanism of the formation of electronically excited species by oxidative metabolic processes: role of reactive oxygen species. Biomolecules. 2019; 9(7): 258. Dostupné z: https://doi.org/10.3390/biom9070258 Go to original source... Go to PubMed...
  4. Volodyaev I, van Wijk E, Cifra M, Vladimirov YA. Ultra-weak photon emission from biological systems: endogenous biophotonics and intrinsic bioluminescence. Springer International Publishing. 2023: 1-521. Dostupné z: https://doi.org/10.1007/978-3-031-39078-4 Go to original source...
  5. Tzani MA, Gioftsidou DK, Kallitsakis MG, Pliatsios NV, Kalogiouri NP, Angaridis PA, et al. Direct and indirect chemiluminescence: reactions, mechanisms and challenges. Molecules. 2021; 26(24): 7664. Dostupné z: https://doi.org/10.3390/molecules26247664 Go to original source... Go to PubMed...
  6. Poplová M, Prasad A, Van Wijk E, Pospíšil P, Cifra M. biological auto(chemi)luminescence imaging of oxidative processes in human skin. Anal Chem. 2023; 95(40): 14853-14860. Dostupné z: https://doi.org/10.1021/acs.analchem.3c01566 Go to original source... Go to PubMed...
  7. Vacek J, Beneš P, Jusku A, Dostál Z, Zatloukalová M, Jirásek P. Elektrofilicita ve vztahu k homeostáze dutiny ústní a teorii hormeze: biochemický pohled. Čes. stomatol. Prakt. zub. lék. 2024; 124(3): 69-74. Dostupné z: https://doi.org/10.51479/cspzl.2024.002 Go to original source...
  8. Meyerstein D. What are the oxidizing intermediates in the fenton and fenton-like reactions? A perspective. Antioxidants. 2022; 11(7): 1368. Dostupné z: https://doi.org/10.3390/antiox11071368 Go to original source... Go to PubMed...
  9. Xu G, Chance MR. Hydroxyl radical-mediated modification of proteins as probes for structural proteomics. Chem Rev. 2007; 107(8): 3514-3543. Dostupné z: https://doi.org/10.1021/cr0682047 Go to original source... Go to PubMed...
  10. Buettner GR, Jurkiewicz BA. Catalytic metals, ascorbate and free radicals: combinations to avoid. Radiat Res. 1996; 145(5): 532-541. Dostupné z: https://doi.org/10.2307/3579271 Go to original source...
  11. Calcerrada M, Garcia-Ruiz C. Human ultraweak photon emission: key analytical aspects, results and future trends - A review. Crit Rev Anal Chem. 2019; 49(4): 368-381. Dostupné z: https://doi.org/10.1080/10408347.2018.1534199 Go to original source... Go to PubMed...
  12. Nakamura K, Hiramatsu M. Ultra-weak photon emission from human hand: influence of temperature and oxygen concentration on emission. J Photochem Photobiol B. 2005; 80(2): 156-160. Dostupné z: https://doi.org/10.1016/j.jphotobiol.2005.02.005 Go to original source... Go to PubMed...
  13. Wijk EP, Wijk RV. Multi-site recording and spectral analysis of spontaneous photon emission from human body. Forsch Komplementarmed Klass Naturheilkd. 2005; 12(2): 96-106. Dostupné z: https://doi.org/10.1159/000083935 Go to original source... Go to PubMed...
  14. Van Wijk R, Kobayashi M, Van Wijk EP. Anatomic characterization of human ultra-weak photon emission with a moveable photomultiplier and CCD imaging. J Photochem Photobiol B. 2006; 83(1): 69-76. Dostupné z: https://doi.org/10.1016/j.jphotobiol.2005.12.005 Go to original source... Go to PubMed...
  15. Cifra M, Van Wijk E, Koch H, Bosman S, Van Wijk R. Spontaneous ultra-weak photon emission from human hands is time dependent. Radioengineering. 2007; 16(2): 15-19. Go to original source...
  16. Kobayashi M, Kikuchi D, Okamura H. Imaging of ultraweak spontaneous photon emission from human body displaying diurnal rhythm. PLoS One. 2009; 4(7): e6256. Dostupné z: https://doi.org/10.1371/journal.pone.0006256 Go to original source... Go to PubMed...
  17. Jung HH, Yang JM, Woo WM, Choi C, Yang JS, Soh KS. Year-long biophoton measurements: normalized frequency count analysis and seasonal dependency. J Photochem Photobiol B. 2005; 78(2): 149-154. Dostupné z: https://doi.org/10.1016/j.jphotobiol.2004.08.002 Go to original source... Go to PubMed...
  18. Zhao X, van Wijk E, Yan Y, van Wijk R, Yang H, Zhang Y, et al. Ultra-weak photon emission of hands in aging prediction. J Photochem Photobiol B. 2016; 162: 529-534. Dostupné z: https://doi.org/10.1016/j.jphotobiol.2016.07.030 Go to original source... Go to PubMed...
  19. Laager F, Park SH, Yang JM, Song W, Soh KS. Effects of exercises on biophoton emission of the wrist. Eur J Appl Physiol. 2008; 102(4): 463-469. Dostupné z: https://doi.org/10.1007/s00421-007-0607-4 Go to original source... Go to PubMed...
  20. Jung HH, Woo WM, Yang JM, Choi C, Lee J, Yoon G, et al. Left-right asymmetry of biophoton emission from hemiparesis patients. Indian J Exp Biol. 2003; 41(5): 452-456.
  21. Yang M, Pang J, Liu J, Liu Y, Fan H, Han J. Spectral discrimination between healthy people and cold patients using spontaneous photon emission. Biomed Opt Express. 2015; 6(4): 1331-1339. Dostupné z: https://doi.org/10.1364/boe.6.001331 Go to original source... Go to PubMed...
  22. Sun M, Van Wijk E, Koval S, Van Wijk R, He M, Wang M, et al. Measuring ultra-weak photon emission as a non-invasive diagnostic tool for detecting early-stage type 2 diabetes: A step toward personalized medicine. J Photochem Photobiol B. 2017; 166: 86-93. Dostupné z: https://doi.org/10.1016/j.jphotobiol.2016.11.013 Go to original source... Go to PubMed...
  23. Vacek J, Zatloukalova M, Kabelac M. Redox biology and electrochemistry. Towards evaluation of bioactive electron donors and acceptors. Curr Opin Electrochem. 2022; 36: 101142. Dostupné z: https://doi.org/10.1016/j.coelec.2022.101142 Go to original source...
  24. Burns JA, Butler JC, Moran J, Whitesides GM. Selective reduction of disulfides by tris(2-carboxyethyl)phosphine. J Org Chem. 1991; 56(8): 2648-2650. Dostupné z: https://doi.org/10.1021/jo00008a014 Go to original source...
  25. Kizek R, Vacek J, Trnková L, Jelen F. Cyclic voltammetric study of the redox system of glutathione using the disulfide bond reductant tris(2-carboxyethyl)phosphine. Bioelectrochemistry. 2004; 63: 19-24. Dostupné z: https://doi.org/10.1016/j.bioelechem.2003.12.001 Go to original source... Go to PubMed...
  26. Dolinská S, Tomečková V. Biochemické zloženie zubov a vplyv rôznych chemických prvkov na ich štruktúru. Čes. stomatol. Prakt. zub. lék. 2017; 117 :13-23. Go to original source...
  27. Kwack KH, Lee HW. Clinical potential of dental pulp stem cells in pulp regeneration: Current endodontic progress and future perspectives. Front Cell Dev Biol. 2022; 10: 857066. Dostupné z: https://doi.org/10.3389/fcell.2022.857066 Go to original source... Go to PubMed...

This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0), which permits non-comercial use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.